

An Optimization Strategy of Shard on Elasticsearch

Zhanglong Wang1, 2, a, Yang Pi1, 2, b
1School of Computer Science and Technology, Chongqing University of Posts and Telecommunications,

Chongqing, 400065, China
2Chongqing Engineering Research Center of Mobile Internet Data Application, Chongqing, 400065, China

a1129279512@qq.com, b1056864298@qq.com

Keywords: ElasticSearch, Index, Shard, Load balancing, Mathematical modeling, Linear weighting
method

Abstract: With the development of big data application, there are more demands on big data
storage and retrieval. Thus, Elasticsearch, a distributed full-text search engine, has appeared, which
can well meet these demands. However, Elasticsearch has the following disadvantages: First, shard
settings are based on user experience and may degrade retrieval performance due to human factors.
Second, the factors considered in the distribution strategy of shards are incomplete. And the last,
without effective processing of concurrent access to hot index data, the average performance of
each node in the Elasticsearch cluster varies greatly. In this paper, we propose a shard optimization
strategy of Elasticsearch, through data and performance analysis, to obtain reasonable shard settings.
After that, the shards are placed in nodes with better performance which are evaluated by the linear
weighting method. Then, the optimized load balancing strategy will migrate hot shards caused by
hot data to make the cluster load balanced. The experimental results show that the proposed shard
optimization strategy can achieve better index retrieval performance and better cluster load.

1. Introduction
With the explosive growth of Internet data, the Internet industry has put forward higher

requirements on the storage and management technology of big data [1]. Therefore, Elasticsearch, an
open source distributed full-text search engine, shows its ability to perform full-text retrieval of big
data within milliseconds [2]. This causes Elasticsearch to be widely applied in the industry. However,
Elasticsearch still has its performance problem of shard strategy to be optimized in practical
applications. For example, users set the quantity of shard according to their experience, and improper
setting may lead to index performance degradation. In addition, the existing placement strategy of
shard mainly considers the principle of dispersion, does not consider the performance of nodes.
Moreover, when Elasticsearch cluster has large concurrent access to hot data, it may cause some
nodes to be overloaded, it brings bad impact to retrieval performance. Therefore, in order to further
improve Elasticsearch's performance, it is of great significance to research Elasticsearch's shard
mechanism.

To solve the above-mentioned problems, this paper proposes a shard optimization of Elasticsearch.
The content includes: According to the performance of nodes and the estimation data size of index,
the quantitative model of shard is constructed, and the reasonable quantity result of shard was
calculated with the model; According to the load performance of nodes, we optimized the placement
strategy of shard, so that nodes with better performance can place shard as a priority. And then, an
optimized load balancing strategy is proposed based on the load performance of nodes, so that it can
load balancing the cluster by migrating the hot shard in high-load nodes.

In order to achieve the above mentioned goals, we studied and analyzed Elasticsearch's existing
mechanism of index-shard by reading relevant literature on Elasticsearch. Therefore, the
optimization method and theoretical basis for solving the above problems are found out. By using
mathematical modeling methods, the quantitative model of shard is established. After referring to
other literatures on the evaluation of machine node performance, the linear weighting method was

2019 4th International Conference on Automatic Control and Mechatronic Engineering (ACME 2019)

Published by CSP © 2019 the Authors 13

used to evaluate the nodes performance of cluster. And then, according to the evaluation results of
node performance, we select nodes with better performance for placing shard, and the idle nodes
which the hot shards will be migrate to. As can be seen from the experimental results, the
optimization method proposed in this paper reduces the query delay of Elasticsearch index, and
improves index retrieval performance, and makes the average load of the cluster more balanced.

In this paper, we focus on Elasticsearch's index shard mechanism research to improve
Elasticsearch performance. The contributions of this paper are summarized as follows:

(1) To solve the problem that there is no reference for users to set the quantity of shards, this
paper establishes the quantitative model of shard according to the performance factors of cluster
nodes and the amount of index's business data estimated by indices, and calculates the reasonable
quantity of shard with this model, to ensure index performance and improve cluster stability.

(2) In order to make full use of nodes, we use the linear weighting method to evaluate the
performance of the nodes. According to the performance evaluation results, the nodes with better
performance are selected for placing shards.

(3) In order to solve the problem like that when there is large concurrent access to hot data, there
may be some nodes with too high load. This paper adopts the method of migrating hot shard on
high-load nodes to idle nodes to achieve load balancing of cluster nodes.

The organizational structure of this paper is as follows: Section 2 introduces Elasticsearch's
relevant research and introduces the thinking and methods of this paper. In section 3, there is an
analysis of Elasticsearch's existing problems. Then there is a detailed introduction of shard
optimization strategy of Elasticsearch proposed in this paper. Section 4 introduces the experimental
design, shows the experimental results and conducts the experimental analysis. In section 5, the
research of this paper is summarized and the future research is introduced.

2. Related work
Elasticsearch has gained wide attention due to its features of distributed storage, inverted index

and data shard. The current research mainly focuses on its index storage, index structure, and index
comprehensive application.

In terms of index storage: Yicheng Zheng, Feng Deng et al. proposed a platform for virtualization
combined with Elasticsearch [3]. Based on this platform, they explore the feasibility and
advancement for storing and searching spatio-temporal data. And the time period index is imported
as spatio-temporal data records both time and location; Dequan Chen, Yi Chen, Brian N et al.
proposed optimization of daily medical data storage cluster topology based on HDFS and
Elasticsearch [4]. This method establishes two big data platforms with the same Hadoop
environment. Each cluster contains one Elasticsearch cluster and one storm topology instance to
achieve real-time or near-real-time storage, analysis and retrieval; S Gupta, R Rani have done
storage comparative research on Elasticsearch and CouchDB document-oriented database, in this
paper, Elasticsearch and CouchDB's performance on image data set is analyzed, proving that
Elasticsearch performance is much better than CouchDB in the retrieval operation process [5].

In terms of index structure: Cun Mu, Jun Zhao, Guang Yang proposed a novel and exciting
visual search solution, we can utilize Elasticsearch to efficiently retrieve similar images based on
similarities within encoded sting tokens [6]; Xuemeng Li, Yongyi Wang et al. proposed
Elasticsearch-based retrieval method design and implementation. This method optimizes the index
data structure and optimizes the retrieval strategy. They also adopt the corresponding compression
algorithm to ensure compression efficiency and improve retrieval performance [7].

In terms of index comprehensive application: Fadi Mohsen, Hamed Abdelhaq, Halil Bisgin were
proposed and evaluated a new security-centric ranking algorithm built on top of the Elasticsearch
engine to assist users evade installing intrusive apps [8]; Giuseppe Amato, Paolo Bolettieri, Fabio
Carrara proposed to transform CNN features into textual representations and index them with the
well-known full-text retrieval engine Elasticsearch [9].

The above research work finded and solved some limitations or performance problems of
Elasticsearch. Studying Elasticsearch's index shard mechanism is an effective way to further

14

optimize it. This paper proposes a shard optimization strategy of Elasticsearch aims at its index shard
performance problem. In this strategy, the quantity of shard is reasonably set, the placement of shard
is based on node performance, and the load balancing problem caused by hot shard was also solved.

3. Description of Problems
This paper studies and analyzes the working principle of existing Elasticsearch index-shard

mechanism, On this basis, optimizes Elasticsearch's shard setup, the placement strategy of shard and
the load balancing problem of cluster caused by high concurrent access to its hot indices. In this
paper, the method mainly considers to reduce the error caused by human experience. The linear
weighting method was used to evaluate the performance of cluster nodes. According to the result,
select nodes with better performance to place shards, and the hot shards will be migrated to perform
cluster load balancing.

Figure 1. Index shard storage mechanism

The Fig.1 shows the structure of index-shard storage mechanism. There is an Elasticsearch cluster
with several nodes, the primary shard of the index and the corresponding replica shard are stored in
the cluster node. The shards of index are evenly distributed across the nodes of the cluster, and
primary and corresponding replica shards are not stored on the same node. Elasticsearch shard
mechanism has the following problems:

(1) The quantity of shard settings: The shard setup of Elasticsearch has no strict basis. Users can
set this by default or by experience. Under the condition of fixed quantity of cluster nodes and index
data, excessive shards will lead to excessive performance and resource waste. On the contrary, too
few shards results in poor index performance and poor clustering performance. Therefore, the
quantity of shards Settings are necessary to accommodate the size of index business data volume and
node performance.

(2) The placement of shards: The shard of Elasticsearch usually adopts primary shards and copy
shards modes, and the storage of shards can ensure as far as possible that the primary shards are
stored separately in the cluster. Under this principle, and then to check whether the node size of disk
space to limit threshold, index in a single node to create the maximum number of shard and the filter
conditions set by users and so on. However, without considering the performance of the nodes in the
cluster, some nodes will be busy or idle, and the performance of the cluster cannot be given full play.

(3) Load balancing problem: When there is a large amount of access to hot index data in the
cluster and the shards of these indices are concentrated on some nodes, it will cause high load on
these nodes. Furthermore, since the quantity of shard can be set by the user, it is easier to aggravate
the cluster load imbalance. Therefore, it is necessary to study the dynamic migration strategy of hot
shards to balance the load of cluster nodes.

15

4. Model and strategies
This paper aims at Elasticsearch's reasonable setting and placement of shards as well as its load

problem with hot shards, the quantity of shard is calculated according to the performance of cluster
nodes and the estimated amount of data of index, such as formula (1), (2), after fragmentation results,
according to the distribution of cluster nodes shard performance optimization, finally, dynamic load
balancing optimization is carried out for hot shards. Through the above optimization, the goal of
making full use of cluster node performance, node load balancing and improving cluster stability is
achieved.

4.1 A Quantitative Model of Shard
In order to guarantee the performance of index, it is necessary to determine the appropriate

quantity of shard at first. In this paper, based on the performance of cluster nodes and the estimated
amount of index data, by means of mathematical modeling [10], the quantitative model of shard is
established to obtain a reasonable quantity of shard. The performance factor of nodes is to verify
whether the nodes meet the performance requirements of creating shard, furthermore the amount of
index data is an important factor affecting the performance of shard. The details are as follows:

The cluster node formation list is named nodeList, the performance of the nodes in nodeList is
verified, and the results are saved in the array, which is named nodeArr. If the verification passes, the
corresponding nodeArr element is set to 1, otherwise it is set to 0. As the volume of index business
data is an important factor affecting shard performance, furthermore, Elasticsearch officially
recommends a single slice with a data storage size of 25GB, and certain extensibility in mind.
Formula 1 is used to calculate the quantity of shard:

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ��𝑒𝑒 ∗ 𝐷𝐷
25𝐺𝐺𝐺𝐺

+ 𝑘𝑘 ∗ ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1 � ∗ (1 + 𝜃𝜃)� (1)

Where D is the estimated amount of index business data, and θ is the extension coefficient, and e
and k are the weight coefficients.

If the above result, shardNum, exceeds the quantity of nodes currently available, then the quantity
of shard should be set based on the quantity of currently available nodes. That is, formula 2 is used to
calculate the quantity of shard:

𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1 (2)

Based on the result shardNum calculated by the above methods, index is created and configured.
That is, number_of_shards: shardNum. Meanwhile we adjust the index parameter,
total_shards_per_node: x, so that the shard placement strategy process shards. x is calculated by
formula 3:

𝑥𝑥 = � 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∑ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1

� (3)

4.2 The Placement Strategy of Shard
In this paper, the performance factors of the nodes are considered, and the performance of each

node is evaluated by using the linear weighting method [11]. Then, the nodes with better
performance are selected for placing shard, which can not only ensure the dispersibility of shards
placement and verification rules, but also consider the performance of the cluster nodes.

(1) The performance evaluation of cluster nodes:
The performance evaluation of nodes that meet the requirements in the quantity model of shard is

carried out by using the linear weighting method, that is, formula 4:

𝑄𝑄𝑖𝑖 = 𝑎𝑎 ∗ 𝐿𝐿𝐿𝐿𝑖𝑖 + 𝑠𝑠 ∗ 𝑆𝑆𝑆𝑆𝑖𝑖 + 𝑏𝑏 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 (4)
Qi represents the performance evaluation result of I node, and the smaller the value is, the better

the performance of I node. LAi, SNi and DsRi represent the average load, the quantity of shards and
the disk utilization rate of I node respectively. And a, s and b are weight coefficients (For the actual
cluster environment, the weight coefficient can be obtained by statistical analysis or expert

16

consultation).
(2) The placement of shard:
To place the shards with shardNum number in algorithm 1. In the process of shard placement, the

nodes with better performance are selected first for placing shard. Meanwhile, check the limits of the
parameter total_shard_per_node during this process, and also consider the number of candidate
nodes versus shardNum.

The Strategy finally determines whether there are any remaining shards that have not been created.
If there is, create these shards in the cluster, do not place them but mark their state as unassigned.
The unassigned tag is a mark on unassigned shards in the cluster of Elasticsearch.
4.3 An Optimization Load Balancing Strategy by Dynamically Migrating Hot Shards

In order to solve the problem of load imbalance of cluster nodes caused by hot shards, in this
paper, the quantity of hot shard in cluster nodes is detected periodically. When the quantity of hot
shards in nodes reaches the threshold, these nodes load will be relatively high. We use the method of
hot data migration to reduce the pressure of high-load nodes. Here we migrate the hot shard among
these nodes. We use the linear weighting method to evaluate the load of cluster nodes, and select idle
nodes as the migration targets of hot shards, so as to share the load on busy nodes and achieve the
goal of cluster load balancing.

(1) Hot shards statistics: We periodically monitor the retrieval frequency of indices by using the
kibana tool [12]. If the threshold α is reached, then, the index is set to the hot index. The shards to
which the hot indices belong are all hot shards. Then, determine whether the number of hot shards in
each node reaches γ. If so, add this type of node to the list to be adjusted.

(2) The load evaluation of nodes: By monitoring and obtaining the I/O utilization rate, network
bandwidth, CPU utilization rate, RAM utilization rate and other parameters of the cluster nodes, the
load evaluation result Qi of each node was calculated by using the linear weighting method through
formula (5):

𝐸𝐸𝑖𝑖 = 𝑜𝑜 ∗ 𝐼𝐼𝐼𝐼𝑖𝑖 + 𝑑𝑑 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑐𝑐 ∗ 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 + 𝑟𝑟 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 (5)
The Ei value represents the load evaluation value of node i, the greater the value shows that the

higher the load of the node i. The IOi, MBPSi, CPUi, RAMi, respectively represent the I/O
utilization, network bandwidth usage, CPU usage, memory usage. The o, c, d, r, respectively
represent the weight coefficient of the four parameters (according to the actual cluster environment,
can use statistical analysis or experts for its weight coefficient), and o + d + c + r = 1.

(3) Dynamically Migrating Hot Shards:
First, determine whether all the values of E reach the threshold β (this indicates that all the cluster

nodes are busy). If so, cancel the load adjustment and wait for the detection of the next cycle.
Otherwise, traverse the list of pending load adjustments, successively move the hot shard in node i
into node j with smaller Ej values. After shard migration is completed and the performance of node i
and j is stable, the values of node Ei and Ej are calculated again, and the number of hot shards in
node i and j is updated. Similarly, the list of pending load adjustment is updated. Repeat this process
until the load list is empty or the load adjustment repeats reach the upper limit.

Before shard load adjustment, specify the shard migration repetitions m = ⌊ n / 2 ⌋, where n
represents the number of cluster nodes. We set the number of repetitions m to avoid getting stuck in
an infinite adjustment.

5. Experiments
The Elasticsearch cluster in experiments has 10 nodes and up to 270GB of data needs to be stored.

The data set is: the taxi driving location record of New York in 2013 (15.3GB). Table 1 shows the
experimental environment.

17

Table.1. The description of the experiment environment

NO of CPUs 16
CPU frequency 2.40GHz

Memory 40GB
Hard Disk Size 400GB

NO of ES servers 10
Network Bandwidth 100M
Operating System Ubuntu 16

(1) The test of shard quantity between the shard quantitative model and native model:
In this paper, the factors of node performance and the estimated amount of index data are taken

into account, and a quantitative model of shard is established. And the estimated amount of index
data is an important factor affecting the calculation results of this model. Therefore, this paper firstly
compares Elasticsearch's native default shard number results with the quantitative model of shard in
the case of different index data volumes. According to the experimental results in Fig.2, we can get
an intuitive comparison of the results. With the increase of index data volume, the shard number
obtained by the shard quantitative model also increases linearly, and it is not just a multiple of 25GB,
but also takes into account the index extensibility and the utilization rate of cluster nodes. By default,
any data size is fixed by the number of shard, which will cause performance waste for small data
volume and performance degradation for large data volume.

(2) The test of query delay between the shard quantitative model and native model:
In this paper, after using the quantitative model of shard to confirm the number of shard, since the

query delay of the index is an important criterion to measure its performance. Therefore, this
experiment was designed to compare the query delay of index generated by the native and the shard
quantitative model under the circumstance of different index data volumes, so as to verify whether
the shard quantitative model in this paper has performance improvement. It can be seen from the
experimental results of Fig.3 that under the same index data volume, the query delay of index
generated by the optimized shard model is generally 20~60ms lower than that generated by the
native model. It shows that the query performance of the indices generated by the quantitative model
of shard is improved.

(3) The test of the cluster’s variance of average load between the optimized shard placement
strategy and native default:

In this paper, several performance factors are used to calculate the performance evaluation values
of cluster nodes by linear weighting method. In this set of performance evaluation results, the
optimal node is selected to place shard in turn. In this experiment, a series of indices were generated
in the cluster by using the native default method and the optimized placement strategy of shard
respectively. By comparing the variance of the average load of the cluster with the same number of
indices, to verify that the average load of the cluster is more balanced under the optimized shard
placement strategy. It can be concluded from Fig.4 that under the optimized shard placement strategy,
the variance results of the average load of the cluster nodes are generally smaller than those obtained
by the native default placement method, which indicates that the optimized shards placement
strategy makes the load of the cluster nodes more balanced. As can be seen from the above figure,
under the native default placement method, there is a sudden drop under 8 indices. This is because
when the indices in the cluster reaches a certain number, the gap of the quantity of shard in each
node will become smaller, that is, all nodes are fully utilized, so the average load variance of the
cluster nodes decreases. This tipping point occurs depending on the number of nodes in the cluster
and the performance.

(4) The test of the cluster’s variance of average load between the optimized load balancing
strategy and native default:

This paper uses the monitoring tool kibana to monitor the index retrieval frequency in the cluster,
and determines the hot shards according to the shard belongs to hot index has the same load, and the
number of hot shard in all nodes of the cluster is counted. This experiment by constructing different
number of hot index, compared to native default load balancing strategy and dynamic migration hot

18

shard of the load balancing strategy, the indices in the same cluster load average variance, to verify
the proposed dynamic migration hot shard of load balancing strategy can make the cluster load more
balanced. As can be seen from the Fig.5, With Elasticsearch's native default strategy, the variance of
the average performance of cluster nodes is fast increasing as the number of hot indices increases.
However, when the number of hot indices increases to a certain number, as in this experiment, when
the number of indexes is 8, the variance result growth trend of the average load of cluster nodes
slows down obviously. This is because as the hot indices spread across the cluster, the average load
on each node becomes more and more similar. By contrast, the load balancing strategy of
dynamically migrating hot shards proposed in this paper makes the variance of the cluster nodes
average load more stable and smaller. This shows that the load balancing strategy proposed in this
paper can achieve better load balancing and better effect.

Figure 2. The shard number result of model

Figure 3. The query delay

Figure 4. The placement strategy of shard

19

Figure 5. The optimized load balancing strategy

6. Conclusion
This paper aims at improving Elasticsearch's performance of index shard. First, Elasticsearch sets

up a computational model to obtain the number of shard by comprehensively considering the
performance factors of cluster nodes and the estimated amount of index data. Then, the performance
evaluation results of cluster nodes are calculated by linear weighting method which considered
several performance factors, and the nodes with better performance are selected for placing shards.
Finally, we periodically detect the quantity of hot shards in the cluster nodes by using monitoring
tools. For nodes whose quantity of hot shards reaches the threshold, we migrate the hot shards of
those nodes to the idle nodes which we selected by performance evaluation results. From the
experimental results, the optimization strategy proposed in this paper reduces Elasticsearch's query
delay of index, improves index retrieval performance, and makes the average load of the cluster
more balanced and improves its stability.

In the future, we will improve the performance evaluation algorithm of cluster nodes to make the
results more accurate and reliable. We will also find a better optimized shard strategy to avoid
migrating shards because of the performance overhead associated with doing so.

References
[1] Qureshi S R, Gupta A. Towards efficient Big Data and data analytics: A review [C] // IT in
Business, Industry and Government (CSIBIG). New Jersey, USA: IEEE, 2014: 1-2.
[2] Singh P K, Suryawanshi A, Gupta S, et al. Elasticsearch and Carrot 2 -Based Log Analytics and
Management [J]. 2016: 1-2.
[3] Zheng Y , Deng F , Zhu Q , et al. Cloud storage and search for mass spatio-temporal data
through Proxmox VE and Elasticsearch cluster [C] // IEEE International Conference on Cloud
Computing & Intelligence Systems. IEEE, 2015: 1-2.
[4] Chen D, Chen Y, Brownlow B N, et al. Real-Time or Near Real-Time Persisting Daily
Healthcare Data into HDFS and ElasticSearch Index inside a Big Data Platform [J]. IEEE
Transactions on Industrial Informatics, 2016, PP (99): 1-3.
[5] Gupta S, Rani R. A comparative study of elasticsearch and CouchDB document oriented
databases [C] // International Conference on Inventive Computation Technologies. IEEE, 2017:1-4.
[6] Mu C, Zhao J, Yang G, et al. Towards Practical Visual Search Engine within Elasticsearch [J].
2018: 1-2.
[7] Li X M, Wang Y Y. Design and Implementation of an Indexing Method Based on Fields for
Elasticsearch [C] // International Conference on Instrumentation & Measurement. IEEE, 2015:

20

626-630.
[8] Fadi Mohsen, Hamed Abdelhaq, Halil Bisgin, Andrew Jolly, Michael Szczepanski: Countering
Intrusiveness Using New Security-Centric Ranking Algorithm Built on Top of Elasticsearch.
TrustCom/BigDataSE 2018: 1048-1057.
[9] Giuseppe Amato, Paolo Bolettieri, Fabio Carrara, Fabrizio Falchi, Claudio Gennaro:
Large-Scale Image Retrieval with Elasticsearch. SIGIR 2018: 925-928.
[10] Tinsley H E A, Brown S D. Handbook of applied multivariate statistics and mathematical
modeling [M]. 2000: 24-38.
[11] Carstoiu D, Lepadatu E, Gaspar M, et al. Hbase - non SQL Database, Performances
Evaluation.[J]. International Journal of Advancements in Computing Technology, 2010, 2 (5):
42-52.
[12] Bajer M. Building an IoT Data Hub with Elasticsearch, Logstash and Kibana [C] // IEEE,
International Conference on Future Internet of Things and Cloud Workshops. IEEE, 2017: 2-6.

21

	1. Introduction
	2. Related work
	3. Description of Problems
	4. Model and strategies
	5. Experiments
	6. Conclusion
	References

